
Implementation of DAWG

Miroslav Bal��k

Department of Computer Science and Engineering

Faculty of Electrical Engineering

Czech Technical University

Karlovo n�am. 13

121 35 Prague 2

Czech Republic

e-mail: balikm@cslab.felk.cvut.cz

Abstract. Let T be a text over a �xed alphabet A. Then an automaton can

be created in a linear time that accepts all substrings that occur in text T . The

ratio of the size of the implementation of this automaton (factor automaton,

DAWG) and of the input text is in usual cases 14:1 . This paper shows a method

of implementing DAWG that reduces this ratio down to 4:1 while preserving

good qualities of the automaton, which is linear time of its construction with

respect to the length of the input text and linear time of checking that a pattern

is present in the text with respect to the length of the pattern.

Key words: �nite automata, approximate string matching, DAWG, factor au-

tomaton

1 Introduction

Let T = t

1

t

2

: : : t

n

be a text over a given alphabet A. An alphabet is a �nite set

of symbols. A word (string) over a given alphabet is a �nite sequence of symbols.

An empty sequence of symbols is called an empty word and it will be denoted as ".

A pattern P = p

1

p

2

: : : p

m

is a substring of a text T i� such two natural numbers i; j

exist that P = t

i

t

i+1

: : : t

j

: To answer whether a pattern P is a substring (subpattern,

subword, factor) of a text T is a look-up problem.

A graph that represents a �nite automaton accepting all substrings occurring in

a given text is called DAWG (Directed Acyclic Word Graph).

The major advantages of DAWG are:

� it has a linear size limited by the number of vertices ,which is less than 2jnj�2;

the number of edges is less than 3jnj � 4, where n > 1 is the length of the text,

� it can be constructed in the time O(n),

� it allows to check whether a pattern occurs in a text in O(m), where m is the

length of the pattern. Algorithm is shown on Fig. 1.

26



Implementation of DAWG

The basic idea of the implementation that is about to be described is that because

the majority of edges contained in DAWG connect neighbouring vertices (according

to a given topological order), these edges are worth implementing as a single bit

saying whether such an edge is present or not. Another DAWG property is that all

edges ending at such vertex are labeled by the same symbol of the alphabet, thus the

labelling symbol can be transferred to vertices. Finally, when a statistical analysis of

symbols and of the number of edges starting at a given vertex is performed, a suitable

encoding can be employed to yield another reduction of DAWG size.

1. State Q := Q

0

; i := 1;

2. if (i = m+ 1)END - Pattern occurs in Text

3. Q := Successor(Q;P [i]); i := i+ 1

4. if(Q = nil) END - Pattern does not occur in Text

else goto(2)

Figure 1: Matching Algorithm

2 Implementation

The approach presented here creates a DAWG structure in three phases. The �rst

phase is the construction of the usual DAWG graph, the second phase is topologi-

cal ordering (or re-ordering) of vertices, which ensures that no edge has a negative

"length", where length is measured as a di�erence of vertex numbers. The �nal phase

is encoding and storing the resulting structure. More details about the implementa-

tion and the results presented here can be found in [Bal98].

2.1 Construction of DAWG

There are many ways of constructing DAWG from text, more details can be found

for example in [Cro94]. The method used in this article is the on-line construction

algorithm. An example of DAWG constructed using this algorithm for an input text

T = aabbabb is shown below:

During this phase a statistical distribution of symbols in the text is created. A

statistical distribution of the number of edges at respective vertices is also created.

2.2 Topological Ordering

The DAWG structure is a directed acyclic graph. This means that its vertices can

be ordered according to their interconnection by edges. Such an implementation

that keeps all the information about edges starting from a vertex only in the vertex

concerned while storing the vertices in a given order guarantees that every pattern

matching will result in a single one-way pass through this structure.

27



Proceedings of the Prague Stringology Club Workshop '98

1

�

�

�

�

�

�

�

�

2

�

�

�

�

�

�

�

�

3

�

�

�

�

�

�

�

�

4

�

�

�

�

�

�

�

�

5

�

�

�

�

�

�

�

�

7

�

�

�

�

�

�

�

�

8

�

�

�

�

�

�

�

�

10

�




�

	

�




�

	

6

�

�

�

�

�

�

�

�

9

�

�

�

�

�

�

�

�

11

�




�

	

�




�

	

a

b

a

b

b b

a

a

b

b b

b

a

Figure 2: DAWG for the text T = aabbabb:

The problem of such topological ordering can be solved in linear time. At �rst, for

each vertex its input degree (the number of edges ending at the vertex) is determined,

next a list of vertices having an input degree equal to zero (the list of roots) is

constructed. At the beginning, this list will contain only the initial vertex. One

vertex is chosen from the list and for all vertices accessible by an edge starting at

this vertex their input degree is decreased by one. Then such vertices that have a

zero input degree are inserted into the list. And this goes on until the list is empty.

The order of the vertices, which determines the quality of the �nal implementation,

obtained this way depends on the strategy of choosing a vertex from the list. Several

strategies were tested and the best results were obtained using the LIFO (last in -

�rst out) strategy, for more details see [Bal98].

The original DAWG shown in Fig. 1 will be reordered using the LIFO strategy

and the resulting graph is depicted in Fig. 3

1

�

�

�

�

�

�

�

�

2

�

�

�

�

�

�

�

�

3

�

�

�

�

�

�

�

�

4

�

�

�

�

�

�

�

�

5

�

�

�

�

�

�

�

�

9

�

�

�

�

�

�

�

�

10

�




�

	

�




�

	

11

�




�

	

�




�

	

7

�

�

�

�

�

�

�

�

6

�

�

�

�

�

�

�

�

8

�

�

�

�

�

�

�

�

a

b

a

b

b b

a

a

b

b b

b

a

Figure 3: The result of reordering.

2.3 Encoding

The DAWG graph is encoded element by element (elements are described later in

this section). It starts with the last vertex according to the topological order (as

described above) and progresses in the reverse order, ending with the �rst vertex of

the order. This ensures that a vertex position can be de�ned by the �rst bit of its

representation and that all edges starting at the current vertex can be stored because

all ending vertices have already been processed and their address is known.

The highest building block is a graph. It is further divided into single elements.

Each element consists of two parts: a vertex and an edge. A vertex carries out an

28



Implementation of DAWG

information on a label of all edges ending at it. A Hu�man code is used for coding of

the respective symbol of the alphabet. An edge is further split into a header and an

address order . A header carries out information on the number of addresses - edges

belonging to a respective vertex. A distribution of edge counts for all vertices can be

obtained during the construction of DAWG. This makes possible to use a Hu�man

code for header encoding, but Fibonacci encoding is su�cient as well, though one

must expect a substantial amount of small numbers. An address is the address of the

�rst bit of the element being pointed to by an appropriate edge. It is further split

to two parts, one describing the length of the other part, which is a binary encoded

address.

Figure 4: Implementation - Data Structures

2.4 Matching Algorithm

1. Build coding trees from the CodeF ile

2. Ptr := 0; fPtr : : :pointer into the CodeF ileg

i := 1; initialize Stack

3. if (i = m+ 1)END - Pattern occurs in Text

4. Decode num : : :number of edges starting in state Q, update Ptr.

5. if (num = "Only one edge to the next vertex") Push(Stack; 0)

else while(num > 0) fdecode one edge and push it to Stack; num :=

num� 1; update Ptr g

6. if (Stack is empty)END - Pattern does not occur in Text

7. Ptr := Ptr + Pop(Stack)

8. Decode label from Ptr

9. if (label = P [i]) f update Ptr; i := i+1; goto(3)g

else goto(6)

29



Proceedings of the Prague Stringology Club Workshop '98

2.5 Symbol Encoding

A code of an element (vertex and corresponding edges) starts with a code of the sym-

bol for which it is possible to enter the vertex. The best code is the Hu�man code,

which can be based either on counts of symbol occurrences in the text, or proportion-

ate representation at individual vertices. The latter better suits the implementation.

File Name jXj Symbol Count Proportionate Repre.

jBitsj

jSymbolj

jBitsj

jSymbolj

TEXT1 21818 4.771186 4.770672

TEXT2 53801 4.264782 4.264746

TEXT3 81054 4.588081 4.587633

RANDOM1K 1000 7.532672 7.531844

RANDOM10K 10051 7.809383 7.807136

RANDOM100K 100447 7.831894 7.831680

The average number of bits necessary to store one symbol is calculated for symbols

representing the vertices of the graph. It can be observed that the two methods of

encoding provide similar results. For example, using the latter method for encoding

the �le TEXT3 will result in improvement of only 0.00045 bits per symbol, which is

0.0098% with respect to the value obtained using the �rst method.

2.6 Symbol Decoding

Decoding begins at the root of the coding tree, and follows a left edge when a '0' is

read or a right edge when a '1' is read. When a leaf is encountered, the corresponding

symbol is output.

2.7 Encoding of Number of Edges

The code of the number of edges is another item. Even this value can be obtained

prior to encoding. A typical example of a distribution of numbers of edges for two

input text �les is shown in the Fig. 6.

Figure 5: Edge count distribution (# of edges, # of vertices - %)

30



Implementation of DAWG

In the �gure Fig. 5 vertices with just one edge starting at them were further

divided into two groups: the �rst group is formed by vertices having just one edge

leading to the next vertex according to given vertex ordering (included in the group

Edge count = 0), and the second group is formed by vertices having just one edge

leading anywhere else (Edge count = 1). The �rst group can be easily encoded by

the value of Edge count

The �gure also shows that more than 84% of all vertices belong to the �rst group.

This means that the code word describing this fact should be very short. It will be

only one bit long using Hu�man coding. Other values of edge counts are represented

by more bits according to the structure of the input text.

The smallest element of DAWG represents a vertex with just one edge ending

at the next vertex. For TEXT3 it is 5.6 (4.6 per symbol + 1 bit per edges) bits

on average. The fact that DAWG consists mainly of such elements was used in the

construction of the Compact DAWG structure (CDAWG) derived from the general

DAWG, more details can be found in [Cro97].

2.8 Number of Edges Decoding

The process is similar to Symbol decoding.

2.9 Edge Encoding

The last part of the graph element contains references to vertices that can be ac-

cessed from the current vertex. These references are realised as relative addresses

with respect to the beginning of the next element. The valid values are non-negative

numbers. To evaluate them it is necessary to know the ending positions of corre-

sponding edges. This is why the code �le is created by analysing DAWG from the

last vertex towards the root in an order that excludes negative edges. If we wanted

to work with these edges, we would have to reserve an address space to be �lled in

later when the position of the ending vertex is known.

The address space for a given edge depends on the number of bits representing

the elements (vertices) lying between the starting and ending vertices. As the size of

these elements is not �xed (the size of the dynamic part depends mainly on element

addresses), it is impossible to obtain an exact statistical distribution of values of these

addresses, which we obtained for symbols and edges. A poor implementation of these

addresses will result in the fact that elements will be more distant and the value range

broader.

Yet it is possible to make an estimation based on the distribution of edge lengths

(measured by the number of vertices between the starting and ending vertices). In

this case the real address value might be only q � times higher on average, where q

is an average length of one DAWG element. The �rst estimation of optimal address

encoding is based on the fact that the number of addresses covered by k bits is the

same for k = 1; 2; :::; t; where t is the number of bits of the maximum address. We

will use an address consisting of two parts: the �rst part will determine the number

of bits of the second part, the second part will determine the distance of the ending

vertex in bits. The simplest case is when the addresses are of a �xed length, then the

length of an average address �eld is r = s + t, where s = 0, which means that r = t

31



Proceedings of the Prague Stringology Club Workshop '98

actually. Another signi�cant case is a situation when the number of categories is t,

then s = dlog

2

te.

When s is chosen from an interval s 2 h0; dlog

2

tei, the number of categories is

2

s

, the number of address bits of the i� th category is

t�i

2

s

. An average address �eld

length is then

r = s+

2

s

X

i=1

t � i

2

s

:

When we rearrange this formula, we obtain

r = s+ t

2

s

+ 1

2

s+1

:

When the address length is �xed and the number of categories varies, this function

has a local minimum for

2

s

=

t ln 2

2

:

If we know t, we can calculate s as

s = log

2

(t ln 2) � 1

s t Optimal jXj

1 6 3B

1 and 2 8 11B

2 12 171B

2 and 3 16 2.7kB

3 23 350kB

3 and 4 32 180MB

4 46 2.9TB

4 and 5 64 8 � 10

17

B

5 92 2 � 10

26

B

The above table shows optimal values of t for given values of s as well as address

limits when it does not matter if we use a code for s or s + 1 categories. The

estimation of the input �le length assumes that the code �le is three times greater

than is the length of the input text, and that the code �le contains the longest possible

edge, which connects the initial and the last vertices. This observation is based on

experimental evaluation.

It can be seen that the value s = 3 is su�cient for a wide range of input text

�le lengths, which guarantees a simple implementation, yet it leaves some space for

doubts about the quality of the approach used. Or is it so that edge lengths are

not spread uniformly in the whole range of possible edge lengths (1 to the maximum

length)? The answer can be found in the following �gure.

The �gure does not contain edges ending at the next vertex (with respect to the

actual vertex) as they are dealt with in a di�erent way. It can be clearly observed that

the assumption of uniformity of the distribution is not quite ful�lled. Nevertheless

categories can be constructed in the way that supports the requirement of the minimal

average code word length. The other two �gures depict the real distribution of address

32



Implementation of DAWG

Figure 6: Edge Length Distribution (Length - bits, # of edges - %)

lengths for two ways of encoding. The �rst is a code with two categories, one encoding

addresses with 15 bits, the other with 30 bits. The second way regularly divides

address codes into eight categories by four bits.

Figure 7: Address length distribution - Two categories (Length - bits, # of addresses

- %)

Both ways of address encoding provide similar results. The relevancy with respect

to the statistical distribution of edges is obvious, the peaks being shifted by three or

four bits to the right.

2.10 Edge Decoding

Decoding depends on the number of categories used for encoding. When eight cat-

egories are used, three bits are used for symbol length code { s = 3. We read these

three bits as an integer n. Then we calculate the number of bits that represent an

edge address as t := (n+ 1) � const, where const is based on the length of CodeF ile.

Than, we read n bits from CodeF ile as an integer, and this number is the address.

33



Proceedings of the Prague Stringology Club Workshop '98

Figure 8: Address length distribution - Eight categories (Length - bits, # of addresses

- %)

The following picture describes the contribution of individual parts to the overall

length of the resulting code.

Figure 9: The in
uence of code lengths to the overall length of the code �le

The biggest portion is occupied by edge encoding, even though the majority of

edges is included in the edge count encoding. The test was performed for encoding

with eight address categories.

2.11 Complexity

DAWG can be created using the on-line construction algorithm in O(n) time [Cro94].

Vertex re-ordering can be also done in O(n) time, encoding of DAWG elements as

described above can also be done in O(n) [Bal98]. Moreover, vertex re-ordering can

be done during the �rst or third phases. This means that the described DAWG

construction can be performed in O(n).

The time complexity of searching in such an encoded DAWG is O(m) [Bal98].

34



Implementation of DAWG

3 Results

File Name jXj jY

1

j jY

2

j

jY

1

j

jXj

jY

2

j

jXj

TEXT1 21818 602928 500385 345.4 % 286.7%

TEXT2 53801 1459973 1201342 339.2 % 279.1%

TEXT3 81054 2304026 1906376 355.3 % 294.0%

MOD4005.TXT 1246946 - 11818341 - 118.5%

RANDOM1K 1000 25687 23258 321.1 % 290.7%

RANDOM10K 10051 244703 219157 304.3 % 272.6%

RANDOM100K 100447 3843810 3177465 478.3 % 395.4%

The size of the code �le for two sets of addresses is denoted as jY

1

j, jY

2

j is relevant

for the code using eight address categories. Both values are in bits and do not contain

information on the Hu�man encoding used. The size of these data does not depend

on the size of the input �le.

4 Conclusion

The results show that the ratio of code �le size vs. the input �le size is 3:1. This

number changes very little with the rising size of the input �le to the detriment of

the code �le. If the ratio rose as high as 4:1, a CD-ROM with the capacity of 600MB

could contain one code �le for an input �le of the maximal size up to 150MB, which is

a more than three-times better result than the one obtained by the classical approach.

References

[Ada89] J. Adamek: Coding. MV

�

ST XXXI, SNTL, Prague, 1989, in Czech.

[Bal98] M. Bal��k: String Matching in a Text. Diploma Thesis, CTU, Dept. of Com-

puter Science & Engineering, Prague, 1998.

[Cro94] M.Crochemore, W.Rytter: Text Algorithms, Oxford University Press, New

York, 1994.

[Cro97] M.Crochemore and R.V�erin: Direct Construction Of Compact Directed

Acyclic Word Graphs. in (CPM97, A. Apostolico and J. Hein, eds., LNCS

1264, Springer{Verlag, 1997) pp 116-129.

[Me95] B. Melichar: Approximate String Matching By Finite Automata. Computer

Analysis of Images and Patterns, LNCS 970, Springer, Berlin 1995.

[Me96] B. Melichar: Fulltext Systems. Publishing house CTU, Prague, 1996, in

Czech.

[Me97] B. Melichar: Pattern Matching and Finite Automata. Proceedings of the

Prague Stringology Club Workshop '97, Prague, 1997.

35


