Počítače 3. generace: Porovnání verzí
Bez shrnutí editace |
Bez shrnutí editace |
||
Řádek 20: | Řádek 20: | ||
[[Soubor:J.Kylbi.jpg|thumb|left|Jack Kilby]] | [[Soubor:J.Kylbi.jpg|thumb|left|Jack Kilby]] | ||
První integrované obvody vytvořili v roce 1959 Jack Kilby a Robert Noyce. V roce 1961 dal Jack Kilby, ze společnosti Texas Instruments na trh první integrovaný obvod se čtyřmi tranzistory. O něco později se na křemíkové destičce (čipu) o rozměrech 5x5 mm podařilo umístit už 20 tranzistorů, a tak vznikla malá integrace (SSI). V dalších letech nastal u integrovaných obvodů rychlý rozvoj a vznikly další stupně integrace. | První integrované obvody vytvořili v roce 1959 Jack Kilby a Robert Noyce. V roce 1961 dal Jack Kilby, ze společnosti Texas Instruments na trh první integrovaný obvod se čtyřmi tranzistory. O něco později se na křemíkové destičce (čipu) o rozměrech 5x5 mm podařilo umístit už 20 tranzistorů, a tak vznikla malá integrace (SSI). V dalších letech nastal u integrovaných obvodů rychlý rozvoj a vznikly další stupně integrace. | ||
==Pokračování 3. generace== | |||
Rychlost spínacích prvků uspořádaných jako integrované obvody na modulových deskách se už stěží dala měřit - operační rychlost počítačů třetí generace se již blížila jednomu miliónu operací za sekundu. Potřebný příkon spínacích prvků klesl na několik mikrowatů a procesor počítače pro vědecké účely se mohl zmenšit na několik krychlových decimetrů. Zbylo mnohem více místa v pamětech pro programové vybavení a operační systémy. Vedle IBM stále prosazovaného jazyka FORTRAN se začaly používat i jazyky ALGOL, COBOL, LISP a PL/1. | |||
Samozřejmostí se stalo vnitřní a vnější sdílení času a multiprogramování. Kompatibilita dosáhla vrcholu a uplatňovala se jak u kódu, tak datových nosičů. Pásky a disky s programem a daty bylo možné přenášet ze stroje na stroj. | |||
Vnější paměti získaly na kapacitě a nástupem rotujících magnetických disků i na rychlosti vybavování. K počítačům bylo možné připojit i několik desítek terminálů. Zavedením terminálů u uživatelů se umožnil přístup k počítačům přímo z jejich pracoviště. Odpadlo převážení dat do výpočetních středisek a čekání na jejich zpracování. |
Verze z 7. 4. 2010, 20:38
Třetí generace je charakteristická použitím integrovaných obvodů (tzv. polovodičová elektronika). S postupem času roste počet tranzistorů v integrovaném obvodu (zvyšuje se integrace). V této době byl výkon počítače úměrný druhé mocnině jeho ceny, takže se vyplatilo koupit co nejvýkonnější počítač a poté prodávat jeho strojový čas. Majitelé požadovali maximalizaci využití počítače, proto se objevilo multiprogramování – zatímco jeden program čeká na dokončení I/O operace, je procesorem zpracovávána druhá úloha. S tím úzce souvisí zavedení pojmu proces, který označuje prováděný program a zahrnuje kromě něj i dynamicky se měnící data. Objevuje se první podpora multitaskingu, kdy se programy vykonávané procesorem střídají, takže jsou zdánlivě zpracovávány najednou. Tento pokrok umožňuje zavedení interaktivních systémů (počítač v reálném čase reaguje na požadavky uživatele). Kromě velkých střediskových počítačů (mainframe) se objevují i první minipočítače a mikropočítače.
Stupně Integrace
S postupným vývojem integrovaných obvodů se neustále zvyšuje stupeň integrace (počet integrovaných členů na čipu integrovaného obvodu). Podle počtu takto integrovaných součástek je možné rozlišit následující stupně integrace:
Výroba integrovaných obvodů
Integrované obvody je možné vyrábět pomocí různých technologií, z nichž každá má svůj základní stavební prvek a díky němu poskytuje specifické vlastnosti:
- TTL (Transistor Transistor Logic): rychlá, ale drahá technologie. Jejím základním stavebním prvkem je bipolární tranzistor. Její nevýhodou je velká spotřeba elektrické energie a z toho vyplývající velké zahřívání se takovýchto obvodů.
- PMOS (Positive Metal Oxid Semiconductor): technologie používající unipolární tranzistor MOS s pozitivním vodivostním kanálem. Díky tomu, že MOS tranzistory jsou řízeny elektrickým polem a nikoliv elektrickým proudem jako u technologie TTL, redukuje nároky na spotřebu elektrické energie. Jedná se však o pomalou a dnes nepoužívanou technologii.
- NMOS (Negative Metal Oxid Semiconductor): technologie, která využívá jako základní stavební prvek unipolární tranzistor MOS s negativním vodivostním kanálem. Tato technologie se používala zhruba do začátku 80. let. Jedná se o levnější a efektivnější technologii než TTL a rychlejší než PMOS.
- CMOS (Complementary Metal Oxid Semiconductor): technologie spojující v jednom návrhu prvky tranzistorů PMOS i NMOS. Tyto obvody mají malou spotřebu a tato technologie je používána pro výrobu velké čáti dnešních moderních integrovaných obvodů.
- BiCMOS (Bipolar Complementary Metal Oxid Semiconductor): nová technologie spojující na jednom čipu prvky bipolární technologie i technologie CMOS. Používána zejména firmou Intel k výrobě mikroprocesorů.
Začátky 3. generace
První integrované obvody vytvořili v roce 1959 Jack Kilby a Robert Noyce. V roce 1961 dal Jack Kilby, ze společnosti Texas Instruments na trh první integrovaný obvod se čtyřmi tranzistory. O něco později se na křemíkové destičce (čipu) o rozměrech 5x5 mm podařilo umístit už 20 tranzistorů, a tak vznikla malá integrace (SSI). V dalších letech nastal u integrovaných obvodů rychlý rozvoj a vznikly další stupně integrace.
Pokračování 3. generace
Rychlost spínacích prvků uspořádaných jako integrované obvody na modulových deskách se už stěží dala měřit - operační rychlost počítačů třetí generace se již blížila jednomu miliónu operací za sekundu. Potřebný příkon spínacích prvků klesl na několik mikrowatů a procesor počítače pro vědecké účely se mohl zmenšit na několik krychlových decimetrů. Zbylo mnohem více místa v pamětech pro programové vybavení a operační systémy. Vedle IBM stále prosazovaného jazyka FORTRAN se začaly používat i jazyky ALGOL, COBOL, LISP a PL/1.
Samozřejmostí se stalo vnitřní a vnější sdílení času a multiprogramování. Kompatibilita dosáhla vrcholu a uplatňovala se jak u kódu, tak datových nosičů. Pásky a disky s programem a daty bylo možné přenášet ze stroje na stroj.
Vnější paměti získaly na kapacitě a nástupem rotujících magnetických disků i na rychlosti vybavování. K počítačům bylo možné připojit i několik desítek terminálů. Zavedením terminálů u uživatelů se umožnil přístup k počítačům přímo z jejich pracoviště. Odpadlo převážení dat do výpočetních středisek a čekání na jejich zpracování.